text.skipToContent text.skipToNavigation

 

 

Future Electronics

 

By François Mirand, EMEA Technical Director, Future Lighting Solutions

Read this article to find out about:

  • The factors which have deterred manufacturers of stadium lighting equipment from using LED light sources
  • The safety, performance and cost advantages of LEDs in stadium lighting
  • New LEDs, drivers and lenses which are suitable for use in large LED lamps for stadium lighting

While most other lighting applications are now completing their transition to LED light sources, the manufacturers of the floodlights which illuminate football pitches, tennis courts and other large outdoor sports fields have until recently retained a preference for conventional High Intensity Discharge (HID) lamps. HID lamps offer high flux and a high-quality light output, and the electrical and optical considerations in using them are easy for floodlight designers to deal with, as shown in Figure 1.

The ArenaVision MVF404 metal halide lamp from Philips Lighting

Fig. 1: The ArenaVision MVF404 metal halide lamp from Philips Lighting, part of its range of high-flux HID lamps for sports lighting. (Image credit: Philips Lighting, a brand of Signify.)

 

But there are signs that the tide might be turning towards new and improved LED and driver solutions: for instance, Philips Lighting grabbed headlines with its installation of LED luminaires to light the playing surface of the Ekaterinburg Arena in Yekaterinburg, one of the Russian stadiums that hosted 2018 World Cup football matches.

So which factors are encouraging the switch to LED light sources in sports field lighting? And how different is the design of an LED-based sports field luminaire from that of an HID-based floodlight?


High cost of HID lamp replacement

There are two strong reasons why operators of stadiums and sports arenas will be happy to see the end of HID lamp technology. First is the limited operating lifetime of the lamps: a typical B50 lifetime (mean time before failure) of just 5,000 hours. This means that HID floodlights require frequent lamp replacements. And since the lamp to be replaced might be as much as 25m in the air at the top of a narrow pole, special access and safety equipment and skilled technicians are required, at a considerable cost.

The other main drawback of HID lamps is their behaviour in the event of an unexpected shutdown, for instance when a stadium’s power circuit fails. HID lamps require a 10-15 minute cool-down period before restarting, and then after re-starting take 5 minutes to reach full brightness. This period of darkness and partial lighting is potentially catastrophic if a power failure occurs during a well-attended match: the safety and public order consequences of holding a crowd of tens of thousands of people inside a dark stadium, with play suspended, are extremely serious.

An LED-based light source eliminates both these problems: the lifetime rating of an LED light source in a floodlight depends on the way in which the design is implemented, but will typically be in the range of 50,000 to 100,000 hours; and LEDs can be turned on instantly at full brightness when the power is switched on or restored after a mains power outage.

Other important benefits to the use of LED light sources for sports field lighting include higher efficacy, low voltage at start-up, and support for dimming and dynamic lighting effects.


Considerations in LED floodlight system design

The advantages to be gained from the use of LEDs in floodlights are, then, very considerable. But the nature of the application puts particular constraints on the design of high-mast LED lighting, and until recently these have hindered OEMs’ attempts to use LEDs in sports field lighting. In 2018, however, suppliers of LEDs, drivers and optics introduced a number of new products which addressed the special requirements of high-mast stadium lighting, and it is now easier than before to create an effective floodlight design based on an LED light source.

The difficulty of making LED floodlights stems from a combination of strict requirements. The playing surface which needs uniform illumination and no shadows is large: for tennis, the court itself is 260m2 and the total area including space for line judges, players’ seating and so on is around 680m2. For football the space is even larger: the pitch is around 7,000m2 and the total illuminated area is around 10,000m2. The illumination requirement depends on whether the field is for use by amateurs, and requires less bright light, or for a high-level professional spectator sport: in the latter case, illuminance of >1,000lux might be required at the playing surface.

Depending on the height of the mast and the size of the playing area, this calls for a light output ranging from hundreds to thousands of kilolumens from the light source. This high light output has to be provided from the smallest possible light-emitting surface, to avoid obstructing spectators’ view, and to impose the lowest possible wind loading on the pole.

In professional stadium lighting, light quality is also tightly specified by TV broadcasters through its Television Lighting Consistency Index (TLCI) specification for color rendering.

The HID lamp is a particularly good solution to the problems of size and weight: a single 2kW HID lamp produces 150,000-200,000lm, so few lamps need to be mounted on each mast, as shown in Figure 2.

The challenge when designing with LEDs is to keep the Light-Emitting Surface (LES) as small as possible, difficult when using general-purpose LED chips, which typically produce around 300lm each. With such devices, a high-mast floodlight would require too many units and would occupy too large an area.

Suitable LED options, however, are now available. Nichia’s NV9W149AM is a multi-die LED which produces a nominal output of 2,490lm of CRI 90 light at a drive current of 2.1A, although it can be driven at a continuous current of up to 3A.

 

Philips ArenaVision floodlighting

Fig. 2: Philips ArenaVision floodlighting lit up the Phoenix Snow Stadium at the South Korea winter Olympics in 2018. (Image credit: Philips Lighting)

 

It is supplied in a package measuring 7mm x 7mm x 3.1mm. Offering high efficacy and light quality, it enables system designers to achieve the very high light output required even by professional sports stadiums in a luminaire with a small total footprint.


Positioning of high-power drivers

The design challenge is not limited to the selection and integration of the LEDs: the choice of the power supply to the LEDs also has serious consequences.

Two important factors determine the choice of LED driver. First, the driver supplies a high load, potentially more than 500W in lighting systems for professional football stadiums, for instance. No driver is 100% efficient, and the power loss is dissipated from the driver as waste heat. Designers of LED lighting equipment tend to think of an integrated driver unit as a self-managing black box that requires no external thermal management. In this case, however, the designer would do well to consider how large amounts of heat can be safely drawn from the case of the driver to the ambient air without overheating the air in the system’s enclosure.

The other concern in driver selection is weight: the lighter the luminaire, the narrower the pole can be, and the less structural support is required for canopy-mounted lighting. The EFD-1K2SxxxDV series of 1.2kW LED drivers from Inventronics, for instance, is an excellent choice for high-flux luminaires. A robust 6.6kg, as shown in Figure 3, it weighs less than an equivalent power system consisting of multiple drivers each with a lower power rating.

Inventronics EFD-1K2SxxxDV 1.2kW LED driver

Fig. 3: An EFD-1K2SxxxDV 1.2kW LED driver from Inventronics weighs 6.6kg

 

An alternative to mounting the driver at the top of the mast, next to the LEDs, is remote mounting at the foot of the pole. This is a novel approach to LED power-system design, for which there is no requirement in other applications. Because of the long distance that control signals must travel between a remote driver and the LEDs, remote mounting can impair the operation of the feedback loop, leading to instability in the power output and in turn causing perceptible impairment of the light output. In addition, the designer will have to account for the voltage drop along the cable, and handle system EMC requirements. Driver manufacturers, however, are beginning to take the requirements of remote mounting into consideration as they develop special new driver products.

In their choice of LED driver, high-mast floodlight designers will also want to consider the specifications for output ripple, which causes light flicker and so is of critical importance for the lighting of broadcast events: it should be limited to less than 2%.

The choice of the dimming interface is also of importance to enable dynamic lighting features, such as flashing or dimming patterns. Fixture manufacturers tend to look for DMX control because of its faster response time compared to DALI. Few high-power drivers offer a DMX interface, and this makes DMX-to- 0-10V converters such as Inventronics’ CNV-DMXR valuable.


Optical design considerations

The last important element of the system for consideration in sports field lighting is beam control. In a typical four-mast topology, with a mast at each corner of a rectangular playing area, the light must throw light precisely onto a quadrant of the total surface from a great height.

Conventional LED collimators provide for excellent beam control from a small point source of light. The small optical losses in a collimator are dissipated as waste heat. In very high-flux systems, this generates a lot of heat, and in fact too much for the polycarbonate (PC) or PMMA materials normally used in lenses for LEDs, which tend to deform at high temperature.

Here too, component suppliers have been developing specialist products suited to sports field lighting. For example, LEDiL supplies the FN16258 STELLA-RS, a lens which produces a 23° spot beam with an LES of 19mm and which is compatible with LEDs with an LES of up to 30mm, as shown in Figure 4. It is made of silicone, a material which is resistant to very high temperatures, but which is heavy and less mechanically stable than PC or PMMA.

 

FN16258 STELLA-RS lens from LEDiL

Fig. 4: The FN16258 STELLA-RS lens from LEDiL is made of high temperature-resistant silicone. (Image credit: LEDiL)

 

Improving the total cost of ownership and much more

As so often with LED technology, the extra initial cost of LED-based sports field lighting will be recouped over the lifetime of the system, in reduced maintenance and replacement expenses and lower energy bills. The quality and the flexible operational controls of an LED lighting system provide important additional benefits. As this article has shown, the development of an LED-based replacement for traditional HID lamps requires careful consideration of various electrical, thermal, mechanical and optical issues, but as Ekaterinburg’s World Cup stadium shows, the LED is the light source of the future for stadium lighting.

FTM NA SideNav SubscribeTile EN
FTM NA Issue3-2019 SideNav Download